光的干涉“双缝实验”

所谓双缝实验,是著名学实验。

在1807年,托马斯·杨总结出版了他的《自然哲学讲义》,里面综合整理了他在学方面的工作,并在里面第一次描述了双缝实验:把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。

什么是光的干涉

物理学中,干涉是指满足一定条件的两列相干光波相遇叠加,在叠加区域某些点的光振动始终加强,某些点的光振动始终减弱,即在干涉区域内振动强度有稳定的空间分布;

双缝实验起源:

托马斯·杨(Thomas Young,1773—1829)于1801年进行了一次光的干涉实验,即著名的杨氏双孔干涉实验,并首次肯定了光的波动性。随后在他的论文中以干涉原理为基础,建立了新的波动理论,并成功解释了牛顿环,精确测定了波长。

1803年,杨把干涉原理用以解释衍射现象。

1807年,杨发表了《自然哲学与机械学讲义》(A course of Lecturse on Natural Philosophy and the Mechanical Arts),书中综合整理了他在光学方面的理论与实验方面的研究,并描述了双缝干涉实验,后来的历史证明,这个实验完全可以跻身于物理学史上最经典的前五个实验之列。但是他认为光是在以太媒质中传播的纵波。这与光的偏振现象产生了矛盾,然而杨并未放弃光的波动说。杨的著作点燃了革命的导火索,光的波动说在经过了百年的沉寂之后,终于又回到了历史舞台上来。但是它当时的日子并不好过,在微粒说仍然一统天下的年代,杨的论文开始受尽了权威们的嘲笑和讽刺,被攻击为“荒唐”和“不合逻辑”。在近20年间竟然无人问津,杨为了反驳专门撰写了论文,但是却无处发表,只好印成小册子。但是据说发行后“只卖出了一本”。

1818年菲涅耳(Augustin Fresnel,1788—1827)在巴黎科学院举行的一次以解释衍射现象为内容的科学竞赛中以光的干涉原理补充了惠更斯原理,提出了惠更斯-菲涅耳原理,完善了光的衍射理论并获得优胜。早于1817年在面对波动说与光的偏振现象的矛盾时,杨觉察到如果光是横波或许问题可以得到解决,并把这一想法写信告诉了阿拉果(D.F.Arago,1786—1853),阿拉果立即把这一思想转告给了菲涅耳。于是当时已独自领悟到这一点的菲涅耳立即用这一假设解释了偏振现象,证明了光的横波特性,使得光的波动说进入一个新的时期。

双缝实验示意图,从光源 a 传播出来的同调光波,照射在一块内部刻出两条狭缝 b 和 c 的不透明挡板 S2 。在挡板的后面,摆设了摄影胶卷或某种侦测屏 F ,用来纪录到达 F 的任何位置 d 的光波数据。最右边黑白相间的条纹,显示出光波在侦测屏 F 的干涉图案

量子力学原理:

让我们考虑这一“原型的”量子力学实验。一束电子或光或其他种类的“粒子-波”通过双窄缝射到后面的屏幕去。为了确定起见,我们用光做实验。按照通常的命名法,光量子称为“光子”。光作为粒子(亦即光子)的呈现最清楚地发生在屏幕上。光以分立的定域性的能量单位到达那里,这能量按照普朗克公式E=hv恒定地和频率相关。屏幕从不会接收“半个”(或任何分数的)光子的能量。光接收是以光子单位的完全有或完全没有的现象。只有整数个光子才被观察到。

然而,光子通过缝隙时似乎产生了类波动的行为。先假定只有一条缝是开的(另一条缝被堵住)。光通过该缝后就被散开来,这是被称作光衍射的波动传播的一个特征。但是,这些对于粒子的图像仍是成立的。可以想象缝隙的边缘附近的某种影响使光子随机地偏折到两边去。当相当强的光也就是大量的光子通过缝隙时,屏幕上的照度显得非常均匀。但是如果降低光强度,则人们可断定,其亮度分布的确是由单独的斑点组成——和粒子图像相一致——是单独的光子打到屏幕上。亮度光滑的表观是由于大量的光子参与的统计效应。(为了比较起见,一个60瓦的电灯泡每一秒钟大约发射出10^20个光子!)光子在通过狭缝时的确被随机地弯折——弯折角不同则概率不同,就这样地得到了所观察到的亮度分布。

然而,当我们打开另一条缝隙时就出现了粒子图像的关键问题!假设光是来自于一个黄色的钠灯,这样它基本上具有纯粹的非混合的颜色——用技术上的术语称为单色的,也即具有确定的波长或频率。在粒子图像中,这表明所有光子具有同样的能量。此处波长约为5×10-7米。假定缝隙的宽度约为0.001毫米,而且两缝相距0.15毫米左右,屏幕大概在一米那么远。在相当强的光源照射下,我们仍然得到了规则的亮度模式。但是现在我们在屏幕中心附近可看到大约三毫米宽的称为干涉模式的条纹的波动形状。我们也许会期望第二个缝隙的打开会简单地把屏幕的光强加倍。如果我们考虑总的照度,这是对的。但是现在强度的模式的细节和单缝时完全不同。屏幕上的一些点——也就是模式在该处最亮处——照度为以前的四倍,而不仅仅是二倍。在另外的一些点——也就是模式在该处最暗处——光强为零。强度为零的点给粒子图像带来了最大的困惑。这些点是只有一条缝打开时粒子非常乐意来的地方。现在我们打开了另一条缝,忽然发现不知为什么光子被防止跑到那里去。我们让光子通过另一条途径时,怎么会在实际上变成它在任何一条途径都通不过呢?

光的波动

在光子的情形下,如果我们取它的波长作为其“尺度”的度量,则第二条缝离开第一条缝大约有300倍“光子尺度”那么远(每一条缝大约有两个波长宽),这样当光子通过一条缝时,它怎么会知道另一条缝是否被打开呢?事实上,对于“对消”或者“加强”现象的发生,两条缝之间的距离在原则上没有受到什么限制。

当光通过缝隙时,它似乎像波动而不像粒子那样行为。这种抵消——对消干涉——是波动的一个众所周知的性质。原来两条路径的每一条分别都可让光通过,而现在两条同时都开放,则它们完全可能会相互抵消。这种现象发生的原因是:如果从一条缝隙来的一部分光和从另一条缝隙来的“同相”(也就是两个部分波的波峰同时发生,波谷也同时发生),则它们将互相加强。但是如果它们刚好“反相”(也就是一个部分波的波峰重叠到另一部分的波谷上),则它们将互相抵消。在双缝实验中,只要屏幕上到两缝隙的距离之差为波长的整数倍的地方,则波峰和波峰分别在一起发生,因而是亮的。如果距离差刚好是这些值的中间,则波峰就重叠到波谷上去,该处就是暗的。关于通常宏观的经典波动同时以这种方式通过两个缝隙没有任何困惑之处。波动毕竟只是某种媒质(场)或者某种包含有无数很小点状粒子的物体的一种“扰动”。扰动可以一部分通过一条缝隙,另一部分通过另一条缝隙。但是这里的情况非常不同;每一个单独光子自身是完整的波动!在某种意义上讲,每个粒子一下通过两条缝隙并且和自身干涉!人们可将光强降得足够低使得保证任一时刻不会有多于一个光子通过缝隙的附近。对消干涉现象,因之使得两个不同途径的光子互相抵消其实现的可能性,是加在单独光子之上的某种东西。如果两个途径之中只有一个开放,则光子就通过那个途径。但是如果两者都开放,则两种可能性奇迹般地互相抵消,而发现光子不能通过任一条缝隙!读者应该深入思考一下,这一个非同寻常事实的重要性。光的确不是有时像粒子有时像波那样行为。每一个单独粒子自身完全地以类波动方式行为;一个粒子可得到的不同选择的可能性有时会完全相互抵消!

光子是否在实际上分成了两半并各自穿过一条缝隙呢?大多数物理学对这 样的描述事物的方式持否定态度。他们坚持说,两条途径为粒子开放时,它们都对最后的效应有贡献。它们只是二中择一的途径,不应该认为粒子为了通过缝隙而被分成两半。我们可以考虑修正一下实验,把一个粒子探测器放在其中的一条缝隙,用来支持粒子不能分成两部分再分别通过两缝隙的观点。由于用它观测时,光子或任何其他种类的粒子总是作为单独整体而不是整体的一部分而出现,我们的探测器不是探测到整个光子,就是根本什么也没探测到。然而,当把探测器放在其中的一条缝隙处,使得观察者能说出光子是从哪一条缝隙通过时,屏幕上的波浪状的干涉花样就消失了。为了使干涉发生,显然必须对粒子“实际上”通过那一条缝隙“缺乏知识”。

为了得到干涉,两个不同选择都必须有贡献,有时“相加”——正如人们预料的那样相互加强到两倍——有时“相减”——这样两者会神秘地相互“抵消”掉。事实上,按照量子力学的规则,所发生的事比这些还更神秘!两种选择的确可以相加(屏幕上最亮的点),两者也的确可以相减(暗点);但它们实际上也会以另外奇怪的组合形式结合在一起,例如

“选择A”加上i乘以“选择B”,

事实上任何复数都能在“不同选择的组合”中起作用!

什么是量子力学?

量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。



无觅相关文章插件

喜欢,就收藏到自己的地盘吧:

我要扯淡: